第七频道

探索创新和消费
有料有趣的创业交流平台

数据解读:为什么这部电影的豆瓣评分我不认可?

当你看了一部电影,但是对豆瓣的评分并不认可,知道这是为什么吗?

不知道大家有没有这样的经历 —— 看了一部电影,但对豆瓣的评分并不认可。

比如,之前看西游伏妖篇,我就很疑惑,为什么分数这么低?毕竟,周星驰是我很喜欢的导演。

而且,评论区也出现了截然相反的评价:

再比如最近的神奇女侠 Wonder Woman,虽然分数不错,但我并不觉得很好看。

此外,一直以来也有“爱乐之城/摔跤吧爸爸评分偏高了吗?”等类似的问题。所以,会想问 ——为什么有的电影分数高/低,但是我们并不认同?是不是豆瓣电影的分数有问题?

之前,从国内外评价差异(和IMDB比较)的角度分析过,比如赤壁/让****飞,国内外的评价并不一致,但还有没有别的原因?

1. 数据概况

选取2008-2017,  国内公映的电影。限制豆瓣评分人数在2W以上,一方面讨论大家较为熟悉、主流的电影,另一方面也尽量减少水军等的影响。总共815部电影,评分分布如图:

包括了很多大家熟悉的电影:

2. 评分的差异

2.1 西游 vs. 杜拉拉

仔细观察西游的评分,会发现和相同评分的电影(杜拉拉升职记)的分布差别很大。

两者评分相同,评价人数也很多(20W, 17W),但5星和1星的比例差别很大[1]。

什么意思呢?

  • 杜拉拉升职记:大家都觉得很一般,所以评分集中在了3星
  • 西游伏妖篇:同时有不少人觉得不错/较差,在1星和5星有不少的分布。

也就是说,尽管两者(平均)分数相同,但是背后的看法非常不同,评分差异很大,这也正好对应了上面,西游出现两种截然相反的热评的情况。

2.2 怎么衡量评分差异

评分分布的差异,可以用方差来衡量,计算方法如下:

也就是计算 评分偏离平均分的程度 [2]。下文使用标准差(STD),方差开方即可。可以做出标准差(STD) – 豆瓣评分(Rating )散点分布图[3]。为了便于比较,做标准差97%范围线。

可以看到西游和杜拉拉升职记的STD差别确实很大,西游的标准差排在前3% ,争议性是巨大的,而杜拉拉则小很多。 另外,还发现散点图的有两个特点

  • 收敛:分数越高(比如从6分到10分),STD分布的范围越来越窄,值越来越小
  • 不对称: 理论上来说,这张图应该是关于6分对称的,因为颠倒一下评星的顺序(e.g. 5星 -> 1星, 4星 -> 2星),就能得到对称的STD值,但实际并不对称。

对于收敛,可以从平均分怎么计算出来的角度理解:平均分越高,占高分的比例越大,因此评分差异较小。至于不对称,后面再说。

2.3 典型电影

这里,可以看到很多典型评价差异很大的电影,比如刺客聂隐娘,一步之遥 等等都在这张图的上方,STD很高。

可以拿他们和STD较低的电影比较:

这里可以问一个问题 —— 这些电影的分数相同,但同样好看/不好看吗?

比如,刺客聂隐娘和我11的分数一样,但他们一样好看吗?

显然不是。

和前面的比较类似,刺客聂隐娘虽然评分较高,但其5星/1星和我11差别很大。为什么呢?大家可能早有耳闻,看评论,也能看到。

可能的原因,是刺客聂隐娘画面极具美感,但另一方面,剧情却让人看不懂。所以评分上出现了较大的分歧。一步之遥也是类似,算是比较有名的例子了。

而爸爸去哪儿,也能从评论中看到一些端倪:

可能的原因是,一方面是娱乐性优秀,带着小孩看电影的家长观众们觉得很好,另一方面,有人觉得这不是电影,纯属圈钱。

通常,我们总是在讨论一部电影评分的高低,但这只是平均分,当大家看法一致的时候,这个分数会很有参考价值。但当评分差异很大(STD很大)的时候,这个分数的作用就有限了。

3. 电影评分的形状

3.1 总共有几种形状?

从评分的分布,很容易想到关于评分形状的段子:

那么,电影的评分,会有多少种形状呢?

可以用K-Means来做,输入数据为5个评分等级的比例。实际可以把类别分得很细,这里简单分成6种,比较有代表性,结果如下图:

这些分布,相当于电影评分的典型形状,两头和中间对应了大家熟知的P, b和钟形分布[4]。需要注意的是,高STD的电影因为其形状差异很大,并不适用于这个分类。

这可以部分解释,为什么散点图是非对称的 —— 因为有很多4星为主的电影,但很少有2星为主的电影。毕竟,大多时候给的评价都是一般(3星),或烂片(1星),很少会有电影“精确烂到2星”。

每个形状下,也能看到STD高/低的电影,比如魔兽,爱乐之城等等。

依然可以问这个问题 —— 这些电影分数相同,但是同样好看吗?

像爱乐之城, 虽然评分和萨利机长一样,都算典型的好电影了,但是打5星的明显比萨利机长多,也侧面说明了为什么有人疑惑其分数“是否偏高”。魔兽,则可能有粉丝加成的影响。其他电影不再具体讨论,大家可以自己分析~

3.2 奇怪的形状

还有一些奇怪形状的电影,比如人间·小团圆,小时代4, 长城,并不属于上述任何一种典型分布

这是为什么?

具体原因不得而知。但实际上,这是典型的混合分布的特征,也就是说,由几个分布叠加得到。

如果把最差评分和中等评分混合起来(各按50%算),可以得到和上面非常相似的形状。

那么,有没有可能真的是混合分布呢?

查看评论,不难发现,对于人间·小团圆,是ZZ因素导致了对其评分的极大差别。

小时代可能也是类似。有人看到郭小四就要打一星,另一方面,原著粉们则表示还算不错。

那么长城呢?可以查看近期的评价。需要注意的是,这时不太可能有水军了,因为这时候的分数对票房毫无意义。简单看一下前两页,发现2-3星居多。

和当初的差评还是有差距的。更靠谱的当然是抓数据,不过豆瓣官方并没有公开相关的数据,这个以后有机会再补吧~ 延伸出来的问题是,恶评如流的电影,在下映之后,还会有那么多差评吗?

4. 总结

本文主要做了两件微小的工作:

  • 用标准差(STD)展示了电影评分的差异情况,能看到不少评价差异很大的电影
  • 对评分的形状,用K-Means分类,可以看到评分形状的几大类型

回到我们最开始的问题 —— 为什么有的电影分数高/低,但是我们并不觉得如此?是分数有问题吗 ?

原因在于,那只是个平均分而已

而有意思的也在于此 —— 大多数人在谈论豆瓣的评分的时候,都知道这是平均分,也都能看到分数的分布情况。而且大多数时候,这个平均分是有效的,因为大家的评价较为接近(STD较小)

但是,很少有人注意到评分的分歧大小(即STD的大小)。所以,当看到一部STD很大的电影,平均分和我们感受不符时,我们疑惑了,进而觉得豆瓣的评分有问题。实际上,只是因为人们的评价差异太大(STD太大),使平均分的意义变得比较有限了而已。

最后,我在想,有没有可能给豆瓣评分旁边加上一个小标签?比如,对STD特别大的电影,在旁边加个“分歧警告”标签,注明 “这部电影的评价差异水平达到了前3%,平均分的参考意义较为有限”,进一步还可以分开展示好评/差评,向用户解释评价差异具体如何。这样或许能减少一些人们对(平均)评分的疑虑。

然后,分析有什么疏漏或者没讲清楚的地方,也欢迎大家指出~

[1] 这里采用的是豆瓣的评分柱状图,画法并不标准(占比最大为定宽),但适用于基本的比较

[2] 理论上,ordinal data不适于计算均值、方差,可见 Recommender Systems: We’re doing it (all) wrong Calculate mean of ordinal variable  。不过,算均值固然不严谨,但是更好的做法,应该是转换成一个可以量化的值,比如考虑每个值之间不同的distance, 而不是全盘否定。简单起见,本文直接当作离散值计算均值、方差。

另外,豆瓣/IMDB的分数并不是简单的平均值,不过实际区别很小。但无论是众数/中位数/加权平均,都没有太大影响。因为本文讨论的是,“当用一个分数来代表电影的水平时,什么时候这个分数是有效的,什么时候是无效的?” 无论这个分数的算法如何,都会存在失效的时候(即分歧较大时)。

[3] 实际STD的尺度没有这么大。这样画图类似于把STD做规整化,更方便于比较。

[4] 理论上可构成的形状要更多,比如5星/1星各占50%的凹形,但这些形状在实际数据中并不存在,所以得到的聚类结果中也没有这些形状。

源代码:cqcn1991/movie-compare

文中涉及的交互式散点图: cdn.rawgit.com/cqcn1991

 

作者:数据冰山

来自:微信公众号:数据冰山

未经允许不得转载:大数据 > 数据解读:为什么这部电影的豆瓣评分我不认可?

评论